Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 98(3)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35212765

RESUMO

Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus,andCraugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.


Assuntos
Quitridiomicetos , Microbiota , Anfíbios/microbiologia , Animais , Bactérias/genética , Resistência à Doença , Pele/microbiologia
2.
Front Microbiol ; 6: 1171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579083

RESUMO

Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont microbial systems as it is in many macro-systems.

3.
PLoS One ; 10(10): e0139848, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445500

RESUMO

The vertebrate microbiome contributes to disease resistance, but few experiments have examined the link between microbiome community structure and disease resistance functions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease caused by the fungus, Batrachochytrium dendrobatidis (Bd). In a factorial experiment, bullfrog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial isolate (Janthinobacterium lividum), or unmanipulated, and individuals were then either exposed or not exposed to Bd. We found that the microbial community structure of individual frogs prior to Bd exposure influenced Bd infection intensity one week following exposure, which, in turn, was negatively correlated with proportional growth during the experiment. Microbial community structure and function differed among unmanipulated, antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selective force on microbial community structure and function, and beneficial states of microbial community structure may serve to limit the impacts of infection.


Assuntos
Quitridiomicetos/fisiologia , Dermatomicoses/microbiologia , Rana catesbeiana/metabolismo , Pele/microbiologia , Animais , Antibacterianos/farmacologia , Sequência de Bases , Quitridiomicetos/efeitos dos fármacos , Quitridiomicetos/isolamento & purificação , Dermatomicoses/etiologia , Dermatomicoses/veterinária , Microbiota/efeitos dos fármacos , Dados de Sequência Molecular , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Rana catesbeiana/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real
4.
J Exp Anal Behav ; 103(1): 218-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25556903

RESUMO

The study of delay discounting, or valuation of future rewards as a function of delay, has contributed to understanding the behavioral economics of addiction. Accurate characterization of discounting can be furthered by statistical model selection given that many functions have been proposed to measure future valuation of rewards. The present study provides a convenient Bayesian model selection algorithm that selects the most probable discounting model among a set of candidate models chosen by the researcher. The approach assigns the most probable model for each individual subject. Importantly, effective delay 50 (ED50) functions as a suitable unifying measure that is computable for and comparable between a number of popular functions, including both one- and two-parameter models. The combined model selection/ED50 approach is illustrated using empirical discounting data collected from a sample of 111 undergraduate students with models proposed by Laibson (1997); Mazur (1987); Myerson & Green (1995); Rachlin (2006); and Samuelson (1937). Computer simulation suggests that the proposed Bayesian model selection approach outperforms the single model approach when data truly arise from multiple models. When a single model underlies all participant data, the simulation suggests that the proposed approach fares no worse than the single model approach.


Assuntos
Desvalorização pelo Atraso , Adolescente , Adulto , Teorema de Bayes , Comportamento de Escolha , Economia Comportamental , Feminino , Humanos , Masculino , Modelos Psicológicos , Recompensa , Fatores de Tempo , Adulto Jovem
5.
ISME J ; 8(11): 2207-17, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24858782

RESUMO

Host-microbe symbioses rely on the successful transmission or acquisition of symbionts in each new generation. Amphibians host a diverse cutaneous microbiota, and many of these symbionts appear to be mutualistic and may limit infection by the chytrid fungus, Batrachochytrium dendrobatidis, which has caused global amphibian population declines and extinctions in recent decades. Using bar-coded 454 pyrosequencing of the 16S rRNA gene, we addressed the question of symbiont transmission by examining variation in amphibian skin microbiota across species and sites and in direct relation to environmental microbes. Although acquisition of environmental microbes occurs in some host-symbiont systems, this has not been extensively examined in free-living vertebrate-microbe symbioses. Juvenile bullfrogs (Rana catesbeiana), adult red-spotted newts (Notophthalmus viridescens), pond water and pond substrate were sampled at a single pond to examine host-specificity and potential environmental transmission of microbiota. To assess population level variation in skin microbiota, adult newts from two additional sites were also sampled. Cohabiting bullfrogs and newts had distinct microbial communities, as did newts across the three sites. The microbial communities of amphibians and the environment were distinct; there was very little overlap in the amphibians' core microbes and the most abundant environmental microbes, and the relative abundances of OTUs that were shared by amphibians and the environment were inversely related. These results suggest that, in a host species-specific manner, amphibian skin may select for microbes that are generally in low abundance in the environment.


Assuntos
Anfíbios/microbiologia , Pele/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Simbiose , Microbiologia da Água
6.
J Environ Qual ; 43(6): 2034-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602220

RESUMO

High levels of fecal indicator bacteria (FIB) are the leading cause of surface water quality impairments in the United States. Watershed-scale models are commonly used to identify relative contributions of watershed sources and to evaluate the effectiveness of remediation strategies. However, most existing models simplify FIB transport behavior as equivalent to that of dissolved-phase contaminants, ignoring the impacts of sediment on the fate and transport of FIB. Implementation of sediment-related processes within existing models is limited by minimal available monitoring data on sediment FIB concentrations for model development, calibration, and validation purposes. The purpose of the present study is to evaluate FIB levels in the streambed sediments as compared to those in the water column and to identify environmental variables that influence water and underlying sediment FIB levels. Concentrations of and enterococci in the water column and sediments of an urban stream were monitored weekly for 1 yr and correlated with a variety of potential hydrometeorological and physicochemical variables. Increased FIB concentrations in both the water column and sediments were most strongly correlated with increased antecedent 24-h rainfall, increased stream water temperature, decreased dissolved oxygen, and decreased specific conductivity. These observations will support future efforts to incorporate sediment-related processes in existing models through the identification of key FIB relationships with other model inputs, and the provision of sediment FIB concentrations for direct model calibration. In addition, identified key variables can be used in quick evaluation of the effectiveness of potential remediation strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...